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Abstract
We show that there is no fermion sign problem in the Hirsch and Fye algorithm
for the single-impurity Anderson model. Beyond the particle-hole symmetric
case for which a simple proof exists, this has been known only empirically. Here
we prove the nonexistence of a sign problem for the general case by showing
that each spin trace for a given Ising configuration is separately positive. We
further use this insight to analyse under what conditions orbitally degenerate
Anderson models or the two-impurity Anderson model develop a sign.

PACS numbers: 02.70.Ss, 71.10.−w, 71.27.+a

Quantum impurity problems describe the interaction of an electron gas with an impurity
possessing internal degrees of freedom and, therefore, a dynamics of its own [1]. To study
the non-trivial physics involved, it has proven useful to develop numerical methods which are
exact. One widely used ‘impurity solver’ is the Monte Carlo algorithm developed by Hirsch
and Fye for the Anderson model [2, 3]. This algorithm is both simple and useful as one
only keeps track of the impurity–impurity Green function during the Monte Carlo updates.
Although it was originally developed to study the simplest form of the Anderson–Hamiltonian,
this algorithm has found application in the context of dynamical mean-field calculations [4]
and, more recently, the mesoscopic Kondo problem [5].

One reason for the success of the Hirsch–Fye quantum Monte Carlo algorithm is that it is
free of problems caused by the negative sign that results upon permuting two fermions. Such
problems tend to plague fermionic quantum Monte Carlo algorithms [6, 7]. In the Hirsch–Fye
case, the absence of such a ‘sign problem’ can be proved easily if particle-hole symmetry is
preserved [8, 9] and has been known empirically in the general case [4, 10]. Here we provide
a formal proof of the absence of any sign problem in the general case. The proof relies on the
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simple fact that the single-impurity problem is effectively one dimensional, and so there is no
fermionic permutation sign.

The Anderson single-impurity Hamiltonian [11] is

H =
∑

σ=↑,↓
H0σ + H1, (1)

H0σ =
N∑

k=1

εkσ c
†
kσ ckσ +

N∑
k=1

(
V ∗

k c
†
kσ dσ + Vkd

†
σ ckσ

)
+

(
εdσ +

U

2

)
d†

σ dσ , (2)

H1 = U

[
nd↑nd↓ − 1

2
(nd↑ + nd↓)

]
. (3)

We do not make any particular assumption on the values of the energies εkσ , the couplings
Vk , or the impurity parameters U and εdσ . Using the Trotter product formula [12], one can
calculate the partition function in the limit

Z = Tr e−βH = lim
M→∞

Tr


 M∏

µ=1

e−τH0 e−τH1


 , (4)

where τ = β/M . For each time slice µ = 1, . . . ,M , an auxiliary Ising variable sµ is
introduced to decouple the spin-up and spin-down parts in H1 using the discrete Hubbard–
Stratonovich transformation [13]

e−τH1 = 1

2

∑
sµ=±1

eλsµ(nd↑−nd↓), (5)

where λ is a constant satisfying the relation cosh(λ) = exp(τU/2). Then, the partition
function can be computed as

Z =
∑
{s}

Z↑(s)Z↓(s), (6)

where the sum is over all possible spin configurations s = (s1, . . . , sM) and the spin-up and
spin-down partition functions, Z↑(s) and Z↓(s), are given by

Zσ (s) = Tr
M∏

µ=1

e−τH0σ eθ(σ )sµλndσ (7)

with θ(↑) = 1 and θ(↓) = −1. In the Hirsch–Fye algorithm, Ising configurations {s} are
generated according to the weight Z↑(s)Z↓(s) using a Metropolis accept/reject step. For
the half-filled Anderson model with particle-hole symmetry, it can be shown easily that the
product Z↑(s)Z↓(s) is always positive [9]. It is, however, empirically found that Zσ (s) itself
is always positive for every s, even in the general case.

To prove this, it suffices to find a basis of the fermionic Hilbert space, independent of the
Ising variable sµ, in which all the matrix elements of e−τH0σ eθ(σ )sµλndσ are positive. To do this,
we cast the problem in an one-dimensional form, as follows. First, note that the impurity is
coupled locally to the electron gas, through the single-particle operator

f1σ = 1

Ṽ

∑
k

Vkckσ , (8)
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where Ṽ = √∑
k |Vk|2. One can therefore convert H0 to a tridiagonal form of single-particle

operators, or equivalently into an open fermion chain [14, 15, 1, 16],

H0σ = −
N−1∑
j=0

hjσ + �N̂σ , (9)

where

hjσ = αjf
†
jσ fjσ + β∗

j f
†
jσ fj+1σ + βjf

†
j+1σ fjσ (10)

with βN = 0, f0σ = dσ and β0 = Ṽ . The actual values of the parameters αj and βj for given
εk’s and Vk’s can be obtained in practice using the Lanczos algorithm with f1 as the initial
operator. N̂σ = ∑

i f
†
iσ fiσ is the total number operator.

We first note that the parameter � can be chosen such that all the αj ’s in the spin chain
are positive. Furthermore, by writing βj = |βj | eφj and performing the gauge transformation

fj = exp


+i

∑
m<j

φm


 f ′

j , (j � 1), (11)

equation (10) is cast in a form where the fj ’s are replaced by f ′
j ’s and all the coefficients βj

are replaced by the positive real numbers |βj |. As a consequence, with the occupation number
states {|n0σ , n1σ , n2σ , . . .〉} as the basis of the spin-σ Fock space (where njσ = 0, 1) and the
phase convention

|n0σ . . . nNσ 〉 = f ′†nN

Nσ . . . f ′†n1
1σ f ′†n0

0σ |O〉, (12)

all matrix elements of −τ(H0σ − �N̂σ ) are positive. Since the operator N̂σ commutes
with H0σ , all matrix elements of exp(−τH0σ ) ≡ exp(−τ [H0σ − �N̂σ ]) exp(−τ�N̂σ ) are
positive, as are those of exp[θ(σ )sµλndσ ]. Note that the basis states are eigenstates of
ndσ = d†

σ dσ = f
†
0σ f0σ . The trace in equation (7) is, then, positive.

Thus because of its essentially one-dimensional nature, the single-impurity Anderson
model has no sign problem in the Hirsch–Fye Monte Carlo algorithm for any choice of
parameters (in fact each spin determinant is separately positive). These considerations may
be applied to a large class of models, thus indicating without any numerical effort whether a
model has no sign problem or whether it is likely to have one. We now discuss an example of
each case.

(1) Orbital- and band-degenerate Anderson model. Consider an atomic impurity in a
metal whose Fermi surface is rotationally invariant (this approximation may be relaxed).
Additionally, as is the case for most transition metal or rare earth impurities, let the
impurity’s outer shell be orbitally degenerate (l = 2, 3 as the case may be). Consider a
general density–density interaction between the orbitals of the impurity,

∑
αβ Uαβnαnβ ,

where α, β are the combined orbital and spin indices mσ . This type of orbitally degenerate
impurity model was studied, for instance, in [17] (note that l = 0 corresponds to the usual
single-impurity Anderson model).

Because of the rotational invariance, for each orbital α on the impurity there is one
particular linear combination of electron gas states, 
α , which couples to it. In fact, α

is a conserved quantity, and so we may separate the α channels into independent one-
dimensional (1D) quantum channels, as in equation (3), each written as a semi-infinite
spin chain. Thus, we have 2(2l + 1) channels that are coupled only by the the quartic
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interaction terms Uαβ at the impurity. Each quartic term may be split into quadratic terms
using a discrete Hubbard–Stratonovich [2] field sαβ . Then, Z = ∏2(2l+1)

α=1 Zα with

Zα(sαβ) = Tr
M∏

µ=1

e−τH0α e
∑

β θαβ s
µ
αβλαβnα , (13)

where θαβ = 1 if α > β and θαβ = −θβα . Using the same arguments as for the single-
impurity problem, we can write each Zα as a product of matrix elements that are positive.
Thus we have shown that the orbitally degenerate Anderson model considered here has
no sign problem.

(2) Two-impurity Anderson model. As an example where the above ideas indicate the presence
of a sign problem, consider two Anderson impurities embedded in an electron gas. Since
the single-impurity problem does not suffer from a sign problem, one may be tempted to
naively hope that this is also the case for the two-impurity model. However, since there
are two impurities at different locations in the electron bath, the bath may not be written as
a sum of independent 1D quantum channels. Thus fermion world lines in imaginary time
may permute, leading in general to a sign problem in fermionic quantum Monte Carlo. In
the special case of particle-hole symmetry, it has been shown that the contributions from
Z↑ and Z↓ always have the same sign [2, 18], and thus there is no sign problem.

In summary, we have shown that the Hirsch–Fye algorithm for the single-impurity
Anderson model does not suffer from a sign problem for any value of the temporal discretization
τ or any values of the parameters in the Hamiltonian. The key property underlying the proof is
that the local interaction allows one to transform the Hamiltonian into a one-dimensional chain
for which there is no fermionic permutation sign. We also considered two more complicated
models to show how these ideas can be used either to prove the absence of a sign problem or
to explain the reason for the presence of one.
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